题目浅析

  • 想查看原题可以点击题目链接

  • 简单地说,就是给一个二维数组和一个数字 k,求从数组的左上角走到右下角的路径和能被数字 k 整除的个数。

思路分享

代码解答(强烈建议自行解答后再看)

  • 参考题解
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class Solution:
def numberOfPaths(self, grid: List[List[int]], k: int) -> int:
# 空间优化
m, n = len(grid), len(grid[0])
MOD = 1_000_000_007

f = [[0]*k for _ in range(n+1)]
f[1][0] = 1
new_f = [0]*k
for i in range(m):
for j in range(n):
for val in range(k):
next_val = (val+grid[i][j])%k
new_f[val] = (f[j+1][next_val] + f[j][next_val]) % MOD
f[j+1][:] = new_f
return f[n][0]

# 递推
m, n = len(grid), len(grid[0])
MOD = 1_000_000_007

f = [[[0]*k for _ in range(n+1)] for _ in range(m+1)]
f[1][0][0] = 1

for i in range(m):
for j in range(n):
for val in range(k):
next_val = (val+grid[i][j])%k
f[i+1][j+1][val] = (f[i][j+1][next_val] + f[i+1][j][next_val]) % MOD
return f[m][n][0]

# 记忆化搜索, 最后一个检查样例的超出内存限制
m, n = len(grid), len(grid[0])
MOD = 1_000_000_007
@cache
def dfs(i:int, j:int, val:int)->int:
if i < 0 or j < 0:
return 0

val += grid[i][j]
val %= k
# print(i, j, val)
if i == 0 and j == 0 and val == 0:
return 1

return (dfs(i-1, j, val) + dfs(i, j-1, val))% MOD
ans = dfs(m-1, n-1, 0)
dfs.cache_clear()
return ans